Course Code	20BS1401	Year	II	Semester(s)	Π
Course Category	Basic Sciences	Branch	EEE	Course Type	Theory
Credits	3	L-T-P	3-0-0	Prerequisites	-
Continuous		Semester			
Internal	30	End	70	Total	100
Evaluation:		Evaluation:		Marks:	

ELECTROMAGNETIC FIELD THEORY

Course Outcomes						
Upon successful completion of the course, the student will be able to						
CO1	Understand the concepts on Electrostatics, Magnetostatics and Time varying					
	fields.(L2)					
CO2	Apply basic laws and theorems to determine the electrostatic fields. (L3)					
CO3	Analyze different parameters of static electric fields. (L4)					
CO4	Apply basic Laws to determine the various parameters of Magnetostatic and Time					
	varying fields. (L3)					
CO5	Analyze various parameters of Magnetostatic fields and Time varying fields. (L4)					
CO6	Submit a report in Electrostatic, Magnetostatic fields and Time varying fields.					

	Contribution of Course Outcomes towards achievement of Program Outcomes &													
			S	trengt	h of co	rrelati	ions (3	:High,	2: Me	dium, 1	:Low)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1														
CO2	3												2	
CO3		2											2	
CO4	3												2	
CO5		3											2	
CO6									3	3			2	

	SYLLABUS	
Unit	Contents	Mapped
No.		CO
Ι	 Static Electric Field – I Coulomb's law, Electric field intensity, Electrical field due to point charges, Line Charges (Derivations Only) – Infinite, Finite and Circular Ring, Surface charges (Derivations Only) – Infinite sheet and Circular Disk. Electric Flux Density, Gauss law and applications of Gauss's Law to Point Charges. Infinite Line Charges. Infinite Sheet of Charges. Co. avial 	CO1, CO2, CO3,CO6
	cable, Spherical shell and Uniformly charged sphere. Divergence and Divergence theorem. Maxwell's first law, div(D)= p_v Energy expended in moving a charge in an electric field, Absolute Electric potential, Potential difference, Calculation of potential	

	difference for point charges, Potential Gradient.	
II	Static Electric Field – II	
	Poisson's and Laplace's equations, Solution of Laplace equations in one	
	variable	
	Electric dipole, Dipole moment, potential and electric field due to an	
	electric dipole, Torque on an Electric dipole in an electric field.	
	Electrostatic Energy and Energy density.	CO1. CO2.
	Current and current density, Ohms Law in Point form, Continuity of	CO3,CO6
	current equation.	
	Electric field inside dielectric material - concept of Polarization,	
	Boundary conditions between conductor dielectric and two dielectric	
	Indefials.	
	and norallal plates with Composite Dialectric	
Ш	Static Magnetic Fields	
111	Biot – Savart's Law Magnetic Field Intensity (MFI) MFI due to straight	
	current carrying filament circular square and solenoid current carrying	
	loops Magnetic flux and flux density Maxwell's second Equation	CO1 CO4
	div(B)=0.	CO1, CO4, CO5, CO6
	Ampere circuital Law, Applications of Ampere's circuital law to infinite	000,000
	sheet of current and a long current carrying filament. Point form of	
	Ampere's circuital law, Maxwell's third equation, Curl (H)=J.	
IV	Magnetic Forces and Inductance	
	Force on a moving charge, Lorentz force equation, Force on a	
	differential current element, Force between differential current elements,	
	Magnetic boundary conditions, Magnetic dipole and dipole moment, a	
	differential current loop as a magnetic dipole, Torque on a current loop	CO1, CO4,
	placed in a magnetic field	CO5, CO6
	Inductances and mutual inductances, determination of self-inductance of	
	a solenoid and toroid and mutual inductance between a straight long wire	
	and a square loop wire in the same plane, energy stored and energy	
X 7	density in a magnetic field.	
V	Foreday's laws of electromognetic induction its integral and point	
	forms Maxwell's fourth equation $Curl (E) = \partial R/\partial t$ statically and	CO1 CO4
	dynamically induced EME – simple problems modification of	CO1, CO4, CO5, CO6
	Maxwell's equations for time varying fields displacement current	200,000
	Povnting theorem and Povnting vector	

Learning Resources

Text Books 1. Mathew N. O. Sadiku "Principles of Electromagnetics," Oxford University Press, 6th Edition 2015

2. William H. Hayt, Jr. John A. Buck, M Jaleel Akhtar "Engineering Electromagnetics", McGraw-Hill, 9th Edition, 2020

Reference Books

- 1. Ashutosh Pramanik, "Electromagnetism Theory and Applications", Prentice Hall India, 2nd edition, New Delhi, 2008.
- 2. Ashutosh Pramanik, "Electromagnetism Problems with solution", Prentice Hall India, 2nd Edition, 2012.
- 3. John D Kraus, Daniel Fleisch "Electromagnetics with Applications", McGraw Hill, 5th

_		
		Edition, 2017.
	4.	Nathan Ida, "Engineering Electromagnetics, Springer 2 nd Edition, 2005.
e-	Reso	ources & other digital material
		1. https://nptel.ac.in/courses/108/106/108106073/#
		2. https://ocw.mit.edu/resources/res-6-001-electromagnetic-fields-and-energy-spring-
		2008/